

0

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.11.1

1.12

2

2.1

3

4

5

5.1

6

6.1

6.1.1

6.1.2

6.1.2.1

6.2

6.3

Table	of	Contents
Introduction

First	Chapter

Getting	rid	of	repetition

Reverse	a	string

Creating	an	empty	array	with	length	>	0

Get	longest	name	in	an	array

Replace	a	character	in	a	string

Convert	HTML	entities	to	character	entities

FizzBuzz

Implement	stack.

Until	you	find	meaning	of	life.

Generate	range	of	numbers.

Returning	arithmetic	functions	based	on	input	operators.

Solution	for	Returning	arithmetic	functions	based	on	input	operators.

Summing	it	up.

Document	Object	Model

Fetch	all	the	elements	of	a	specific	type	from	the	loaded	page.

Canvas	API

CoffeeScript

Resources

jQuery

Programming	Style	Guide

ES	5

ES	5	-	Programming	Style	Rules

ES	5	-	Programming	Language	Rules

var

ES	2015

ES	2016

EcmaScript

2

A	book	on	JavaScript
This	is	the	book	you	want	to	read	up	on	JavaScript.

What	people	are	saying	about	this	book:

I	wish	I	had	this	book	in	school.

Everytime	I	read	this	book,	it	teaches	me	something	new.

Where	were	you	'A	book	on	JavaScript'?

And	more.

Tell	@hackecmascript	how	you	felt	about	the	book.	Comment	on	the	book	content	itself	if
you	find	a	mistake.

EcmaScript

3Introduction

https://twitter.com/hackecmascript

Chapter	1	-	Solving	simple	problems
This	is	the	first	chapter	of	the	book	and	it	talks	about	solving	simple	problems.	There	is	no
introduction	to	the	material	like	JavaScript	language	and	syntax	etc.	This	is	by	design.	The
best	way	to	learn	programming	is	by	doing	it,	by	solving	challenges	and	problems.

I	have	added	enough	explanation	to	get	you	through	the	problems.

By	the	way,	this	book	is	not	for	beginners.	This	book	is	for	understanding	JavaScript.	It	is
about	learning	other	ways	to	solve	a	problem	than	what	we	already	know.	You	can	be	a
beginner	or	an	expert	and	you	can	still	learn	a	new	thing	from	this	book.

EcmaScript

4First	Chapter

Problem	-	Getting	rid	of	repetition.
We	want	to	welcome	a	few	friends	to	JavaScript.	But	all	we	end	up	doing	is	repeating
ourselves.	Computers	are	supposed	to	do	the	boring,	repetitive	job	and	not	humans.

We	need	to	get	rid	of	:

				console.log('Hi,	Anubhav');		

				console.log('Hi,	Jake');		

				console.log('Hi,	Ram');		

				...

as	our	way	of	greeting	our	friends.

We	need	sophisticated	way,	where	we	would	use	name	of	our	friends	and	they	will	be
greeted.

Solution

We	are	going	to	use	function	to	solve	our	problem.	We	know	that	the		console.log('Hi,		and
	');		part	is	common	in	each	line.	We	are	going	to	put	that	in	a	function	and	use	variables
where	we	need	names.

				function	SayHi()	{

								console.log('');

				}

	SayHi()		is	a	function	now.	One	thing	to	note	is	that	it	is	not	going	to	do	anything	all	by	itself.
It	is	sleeping,	sort	of.	We	need	to	call	it	to	wake	it	up.

	SayHi();		will	call	this	function	and	it	will	work.	There	is	nothing	much	to	work	here.	When
this	function	will	run,	it	will	print	an	empty	single	line	and	quit.	It	will	go	back	to	sleep.

Now,	we	need	to	make	it	say	"Hi".

				function	SayHi()	{

								console.log('Hi');

				}

EcmaScript

5Getting	rid	of	repetition

If	we	call	our	function	now,	we	will	get		Hi		as	output	of	it.	This	is	cool	but	still	basic.	We	want
to	greet	our	friends.	For	that	purpose	we	are	going	to	use	variable	named		name	.

				function	SayHi(name)	{

								console.log('Hi,	'	+	name);

				}

Now,	we	need	to	call	it	with	names	of	our	friends.

				SayHi("Anubhav");

				SayHi("Jake");

				SayHi("Ram");

				...

And	we	are	done.

More	to	read:	-

Variables.
Functions.
console.log.

EcmaScript

6Getting	rid	of	repetition

Problem	-	Reverse	a	string
Given	a	string	in	a	variable		str	,	return	a	string	that	is	reversed	of		str	.

Examples	and	conditions:

If	we	input	str	=	"Anubhav",	reverse(str)	should	return	"vahbunA".
If	we	input	str	=	"a	string",	reverse(str)	should	return	"gnirts	a".
We	want	to	keep	punctuation,	spaces	and	every	other	thing	intact	except	we	want	the
string	characters	to	be	in	reversed	order.

There	is	no	explanation	why	we	need	to	reverse	a	string.	I	assure	you	that	this	is	the	one	of
the	most	common	problem	people	ask	each	other	when	they	are	interviewing	or	learning	to
program.

We	would	learn	following	things	from	this	exercise:

How	to	make	function	return	something	that	interests	us.
How	to	concatenate	string.
How	to	fetch	characters	in	a	string.
How	to	fetch	characters	in	a	string	backwards.
How	to	know	the	length	of	the	string.
How	to	loop	over	a	string.
How	to	create	a	new	string	by	way	of	concatenation.
How	to	use	inbuilt	JavaScript	functions	to	manipulate	input.

Solution

Logic

A	string	is	something	like	this:		"I	am	a	string."		or		'I	am	a	string.'		where		"		or		'		don't
matter.	(For	this	example).

Note:	Do	not	mix		"		and		'	.	Every	beginning		"		needs	ending		"		and	same	goes	for		'	
in	matters	of	strings.	Though	we	will	see	that	we	need	to	mix	them,	but	that's	when	we
understand	strings	better.

Code

EcmaScript

7Reverse	a	string

				function	reverse(input)	{

								var	output	=	"";

								for(var	i	=	0;	i	<	input.length;	i++)	{

												output	+=	input.charAt(input.length	-1	-i);

								}

								return	output;

				}

There	is	a	lot	to	unpack	here.

We	are	using		function		which	we	have	seen.
We	are	using		for		loop.	We	are	using		string	concatenation	via	+	operator	.
We	are	using		charAt		function	to	get	character	at	a	specific	position	in	string.
We	using	convoluted	mathematics		input.length	-	1	-i		to	get	characters	from	end	of
the	string.
We	are		return	-ing	value	from	the	function	instead	of		console.log	-ing	it.

I	suggest	you	read	up	on	all	the	concepts	before	moving	forward.

Advanced	solution

				function	reverseString(str)	{

						return	str.split('').reverse().join('');

				}

				reverseString("hello");

Well,	first	thing	to	note	here	is	the	function		reverseString	.

				function	reverseString(str)	{

								return	str;

				}

This	function	is	very	basic	and	has	no	real	purpose.	It	takes	a	string	in	a	variable		str		and
just	returns	it.

Let's	look	at	the	logic	we	need	to	find	the	reversed	string.

Logic

EcmaScript

8Reverse	a	string

Get	a	string.
Iterate	over	it	from	back	to	front.
return	newly	created	string	thus.

Here,	instead	of	iterating,	I	am	going	to	use	javascript	functions	that	are	in	built.

split()

This	function	splits	a	string	into	array.	An	empty	string		''		creates	an	array	that	contains
every	character	from	string.

String.prototype.split()

reverse()

This	function	reverses	an	array	in	place.		[1,	2,	3,	4].reverse()		will	return		[4,	3,	2,	1]	.
Similar	thing	happens	to	string.

	"Anubhav".split('')		will	split	string	into	an	Array		["A",	"n",	"u",	"b",	"h",	"a",	"v"]	.

	["A",	"n",	"u",	"b",	"h",	"a",	"v"].reverse()		will	return	reversed	array:		["v",	"a",
"h",	"b",	"u",	"n",	"A"]	

join()

Join	joins	the	elements	of	an	array	and	creates	a	string.

	["v",	"a",	"h",	"b",	"u",	"n",	"A"].join('')		returns		"vahbunA"	.

Thus,	we	have	succeeded	in	reversing	a	string	by	using		split()	,		reverse()		and		join()	.

EcmaScript

9Reverse	a	string

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split

Problem	-	Creating	an	empty	array	with	length
>	0
When	we	create	array,	we	follow	the	syntax		var	arr	=	[];		as	it	is	succinct.	But	this	creates
an	array	with		length	=	0		which	can	be	found	out	by	using		arr.length	.

The	question	then	becomes	is	how	to	initialize	an	empty	array	with		length	=	5	?

We	are	going	to	learn	following	things	from	this	problem:

How	to	create	arrays.
How	to	create	empty	arrays.
How	to	create	arrays	with	values	and	empty	slots.
What	happens	when	we	access	array	with	index	that	is	not	initialized.

Solution

Suppose	we	need	10	digits	in	an	array.	We	write	array	like		var	array	=	[0,	1,	2,	3,	4,	5,
6,	7,	8,	9];	.	This	is	fairly	short	and	readable	way	to	initialize	an	array.

	Array		in	JavaScript	have	properties	such	as		length		which	specifically	tells	us	amount	of
elements	it	is	holding.

Continuing	from	last	example,		array.length		will	get	us		10	.

				var	names	=	["Anubhav",	"Jake",	"Hyde",	"Thorax"];

				console.log(names.length);

Will	give	us	4	as	there	are	four	names	in	the	array.

But	when	we	go	for	an	empty	array,	we	get		length	=	0		and	this	is	the	problem	that	we	have
to	solve.

Code

				var	arr	=	[,	,	,	,	,];

Yup,		5		commas	between		[,]		and	you	are	all	set.

If	you	go	to	console	(say	firefox's)	by	hitting	F12,	you	will	see	that	when	you	try	to	access
this	array	it	shows:

EcmaScript

10Creating	an	empty	array	with	length	>	0

				var	arr	=	[,	,	,	,	,];

				arr;

				Array	[<5	empty	slots>]

Which	tells	us	that	the	array	has	memory	for	five	items.

You	can	also	mix	data	with	non	data	and	create	arrays	that	have	spaces	for	future	data.

				var	arr	=	[1,	,	3,	,	5,];

				arr;

				Array	[1,	<1	empty	slot>,	3,	<1	empty	slot>,	5]

				arr[0]

				1

				arr[1]

				undefined

				arr[2]

				3

In	code	above,	length	of	the	array		arr		is	still	5,	but	only	3	slots	are	filled	and	2	are	empty.

EcmaScript

11Creating	an	empty	array	with	length	>	0

Problem	-	Get	longest	name	in	an	array
We	are	given	a	bunch	of	names:		["Ecma",	"Script",	"Hacker",	"Fill	Haac",	"John
Snokeet"]		and	we	want	to	know	which	one	of	the	given	names	is	longest	one.

We	are	going	to	learn	following	things	from	this	exercise:

How	Arrays	can	be	sorted.
How	to	provide	our	own	implementation	for	comparing	elements	if	we	need	to.
How	to	sort	strings	in	an	array	alphabetically	or	length-wise.
How	to	get	the	last	item	out	of	an	array	via		pop()	.
Functions	can	be	written	inside	other	functions.
Functions	can	be	passed	as	variables.

Solution
Logic

Think	of	array	as	storage	space	but	for	data	and	we	access	it	usually	sequentially.	We	have
some	stuff	in	our	storage	and	we	want	to	move	things	around.

We	are	going	to	move	things	based	on	their	size.	In	our	exercise,	size	of	stuff	can	be
calculated	by		names[index].length		and	if	we	compare	every	datum	with	other,	we	can	find
out	the	longest	name	in	the	array.

For	every	name,	get	it's	length.	Compare	length	to	other	name's	length.	Get	the	index	of	the
name	that	has	longest	length.	Return	the	name	@	that	index	in	names.

Pseudo	code	This	is	hint	of	how	to	solve	the	problem.

				maxLengthName	=	first	name	in	names.

				for-each(name	in	names	from	second	name)	{

								if	name.length	is	greater	than	other	name's	length

												update	maxLengthName	to	current	name.

				}

				return	maxLengthName

Which	would	translate	into	JavaScript	as:

Code	A	monstrous	implementation

EcmaScript

12Get	longest	name	in	an	array

				function	getLongestName(names)	{

								var	i	=	0;

								var	maxLengthNameIndex	=	0;

								for(i	=	1;	i	<	names.length;	i++)	{

												if(names[i].length	>	names[maxLengthNameIndex].length){

																maxLengthNameIndex	=	i;

												}

								}

								return	names[maxLengthNameIndex];

				}

				var	names	=	["Ecma",	"Script",	"Hacker",	"Fill	Haac",	"John	Snokeet"];

				getLongestName(names);						

				"John	Snokeet"								//	I	got	this	output	since	I	am	in	FireFox's	console.

You	can	understand	the	code	easily.	All	we	are	doing	is:

Assuming	first	name	is	longest.		//	var	maxLengthNameIndex	=	0;	
Looping	from	second	name	to	last

If	length	of	name	comes	longer	than	first	names'
We	update		maxLengthNameIndex		with	current	name's	index.

Return	name	with	longest	length.

Advanced,	Sexy	but	Inefficient	Solution
Code	Short-Sweet-and-Sexy	way	of	doing	the	thing	above

				function	getLongestName(names)	{

								return	names.sort(function(a,	b){	return	a.length	-	b.length;	}).pop();

				}

I	guess	I	can	break	it	down	a	bit.

				function	getLongestName(names)	{

								return	names.sort(

												function(a,	b)	{

																return	a.length	-	b.length;	

												}

).pop();

				}

EcmaScript

13Get	longest	name	in	an	array

We	can	get	compare	function	out	of	sort	call	and	re-write	it	in	getLongestName	function
itself.

				function	getLongestName(names)	{

								function	compareByLength(a,	b)	{

												return	a.length	-	b.length;	

								}

								return	names.sort(compareByLength).pop();

				}

Note:	All	the	examples	above	(in	advanced	section)	deals	with	Function-In-Function
scenario.	This	is	very	important	tool	and	in	future	we	will	find	it	almost	indispensable.

We	can	de-tangle	two	functions	and	write	a	bit	more	readable	code	as	follows.

Code	compare	functionality	moved	outside	of		getLongestName()	

				function	compareByLength(a,	b)	{

								return	a.length	-	b.length;

				}

				function	getLongestName(names)	{

								return	names.sort(compareByLength).pop();

				}

I	wouldn't	go	into	how	compare	helps	except	that	you	can	rewrite	compare	as	follow	to	have
same	effect.

Code	A	bit	more	verbose	version	of	compare	function.

				function	compareByLength(a,	b)	{

								if(a.length	<	b.length)	{

												return	-1;

								}	else	if(a.length	>	b.length)	{

												return	1;

								}	else	{

												return	0;

								}

				}

				function	getLongestName(names)	{

								return	names.sort(compareByLength).pop();

				}

EcmaScript

14Get	longest	name	in	an	array

There's	a	catch!	Sorting	whole	array	just	to	find	highest/longest	element	is	an	overkill.	It	can
be	justified	for	arrays	containing	few	elements;	but	for	a	sizable	array	this	will	be	slower,
inefficient	and	not	necessary.

Only	benefit	to	sorting	array	is	when	there	are	going	to	be	next	queries	on	sorted	data	set.

Example:

				["Range",	"Strange",	"Rave",	"Brave",	"Is",	"New",	"Stupid"]

If	you	sort	array	on	first	query	like	"get	the	smallest	word".	Then	"get	the	largest	word"
becomes	a	constant	time	operation.

Advanced	and	Efficient	solution

				function	getLongestName(names){

						var	longest	=	names[0];

						names.forEach(function(x)	{

								if(longest.length	<	x.length){

										longest	=	x;

								}

						});

						return	longest;

				};

				getLongestName(names);

A	challenge	for	you:	Find	a	peculiar	behavior	of	this	program	when	there	are	names	that
have	same	length.

EcmaScript

15Get	longest	name	in	an	array

Problem	-	Replace	a	character	in	a	string
We	are	given	a	string,	say,		var	str	=	"It's	my	turn	now,	it's	my	turn	now.";		and	we	want
to	replace	every		y		with		e	.	Don't	know	why	we	wanna	do	that;	it's	a	good	song.	But	that's
the	problem.	Replace	a	given	character	in	a	given	string.

Solution
	var	newString	=	str.replace('y',	'e');	

The	code	above	works.	It	replaces	the		y		with		e	,	but	with	a	problem:	It	doesn't	replace	all
of	the		y	's	into		e	s.

Code	-	Running	in	FireFox	console.

				var	str	=	"It's	my	turn	now,	it's	my	turn	now.";

				undefined

				var	newString	=	str.replace('y',	'e');

				undefined

				newString

				"It's	me	turn	now,	it's	my	turn	now."

So,	what	we	do?

Well,	we	can	call	replace	again	on	the	returned	value.

	var	newString	=	newString.replace('y',	'e');	

But	you	will	see	that	it's	a	lousy	way	to	do	so.	Obvious	question	is:	what	if	there	are	more
than	2		y	s?

Though	we	can	put	the	replacement	in	a	loop	with	terminating	condition	being	string	not
equal	to	last	iteration.

Code	-	Loopy	way	to	write	char-replacement	code

EcmaScript

16Replace	a	character	in	a	string

				function	Replacer(str,	toReplace,	replaceWith){

								var	newString	=	str;

								var	oldString	=	"";

								while(newString	!==	oldString){

												oldString	=	newString;

												newString	=	oldString.replace(toReplace,	replaceWith);

								}

								return	newString;

				}

				Replacer("It's	my	turn	now,	it's	my	turn	now.",	'y',	'e')

				"It's	me	turn	now,	it's	me	turn	now."

As	we	can	see	the	code	and	logic	work.	But	this	is	not	a	good	way	to	do	so,	even	though	it
solves	the	problem	completely.

We	have	to	move	to	advanced	topic:	Regular	Expressions.

Advanced	Solution
Check	this	code	below,	if	you	are	unfamiliar	with	RegEx,	you	are	going	to	be	amazed	at	it's
succinct-ness.

Code	-	Replace	all	instances	of	a	character	in	a	string

				function	Replacer(str,	toReplace,	replaceWith)	{

								var	toReplaceRegex	=	new	RegExp(toReplace,	"g");

								return	str.replace(toReplaceRegex,	replaceWith);

				}

A	word	of	caution:	Remember	we	are	replacing	characters.	Can	you	find	ways	to	hack	this
code,	by	putting	weird	input	perhaps?	What	other	ways	we	can	break	this	function?	What	do
you	think	about	capitalization	and	punctuation?

Now	let's	see	this	function's	output.

Output

EcmaScript

17Replace	a	character	in	a	string

				Replacer("It's	my	turn	now,	it's	my	turn	now.",	'y',	'e')

				"It's	me	turn	now,	it's	me	turn	now."

In	two	lines,	we	have	managed	to	remove	all	the	instances	of		y		with		e	.

This	is	cool.

You'll	need	to	read	up	on:

RegExp
filters	for	RegExp:	g,	i,	etc.

EcmaScript

18Replace	a	character	in	a	string

Problem	-	Convert	HTML	entities	to
character	entities
You	are	given	an	input	from	user	as		<big>I	am	great	@	"javascript".	Best's	Best.!</big>	.
As	you	can	see	that	it	contains,		<	,		>	,		'	,		"	,		@		and		!	.	We	might	do	not	care	about	it
here,	but	servers	do.	Suppose,	a	user	pasted	a	malicious	script	in	comment	section	and	web
server	serves	that	as	output	to	every	other	user.	Do	you	think	it	will	create	a	security	risk?

That's	a	rhetorical	question.	Of	course,	it	does.	Moving	on.

We	need	to	sanitize	the	input	from	the	user	and	make	it	digestible	for	web	server.

Using	Character	Entity	reference	chart	we	are	going	to	convert	unsafe	characters	to	their
safer	versions.

Solution
One	way	to	code	this	problem	is	as	we	saw	in		Replace	a	character	in	a	string	.

				function	sanitize(str)	{

						return	str.replace(/&/g,	'&')

																.replace(/</g,	'<')

																.replace(/>/g,	'>')

																.replace(/"/g,	'"')

																.replace(/'/g,	''');

				}

Code	-	Sanitizes	unsafe	characters

But,	this	code	suffers	from	a	problem.	It's	too	specific.	What	if	we	do	not	want	to	sanitize
	'	?	or		"	.	If	there's	no	variability	in	our	requirements	then	this	code	is	fine.	But	if	there	is,	it
is	not	a	good	way	to	handle	such	requirements.

A	better	way	to	do	so	would	be	to	create	small	functions	that	do	one	thing.	That	we	can
compose	our	solution	as	we	want.

EcmaScript

19Convert	HTML	entities	to	character	entities

http://dev.w3.org/html5/html-author/charref

				var	

				sanitizeAmpersand	=	function(input)	{	return	input.replace(/&/g,	'&');	},

				sanitizeGreaterThan	=	function(input)	{	return	input.replace(/>/g,	'>');	},

				sanitizeSmallerThan	=	function(input)	{	return	input.replace(/</g,	'<');	},

				sanitizeQuote	=	function(input)	{	return	input.replace(/"/g,	'"');	},

				sanitizeApos	=	function(input)	{	return	input.replace(/'/g,	''');	};

				var	sanitized	=	sanitizeSmallerThan(sanitizeGreaterThan(sanitizeAmpersand("<big>I	am	great	@	\"javascript\".	Best's	Best.!</big>"

				sanitized

				"<big>I	am	great	@	"javascript".	Best's	Best.!</big>"

Code	-	The	way	we	want	to	work	if	we	have	variability	in	our	requirements.

One	way	to	handle	the	variability	and	ease	of	coding	is	to	hack	the		String		variable.

				String.prototype.sanitizeAmpersand	=	function()	{	return	this.replace(/&/g,	'&');	}

				function	String.prototype.sanitizeAmpersand()

				"You	&	I".sanitizeAmpersand()

				"You	&	I"

Code	-	To	test	if	hacking	String	is	possible	-	yes	it	is.

This	way	we	can	hack	string	prototype	and	write	our	code	and	get	the	output	fairly	straight
forward	way.

EcmaScript

20Convert	HTML	entities	to	character	entities

				String.prototype.sanitizeAmpersand	=	function()	{	return	this.replace(/&/g,	'&');	};

				String.prototype.sanitizeGreaterThan	=	function()	{	return	this.replace(/>/g,	'>');	};

				String.prototype.sanitizeSmallerThan	=	function()	{	return	this.replace(/</g,	'<');	};

				String.prototype.sanitizeQuote	=	function()	{	return	this.replace(/"/g,	'"');	};

				String.prototype.sanitizeApos	=	function()	{	return	this.replace(/'/g,	''');	};

				var	input	=	"<big>I	am	great	@	\"javascript\".	Best's	Best.!</big>";

				undefined

				input.sanitizeAmpersand().sanitizeGreaterThan().sanitizeSmallerThan()

				"<big>I	am	great	@	"javascript".	Best's	Best.!</big>"

				input.sanitizeAmpersand().sanitizeGreaterThan().sanitizeSmallerThan().sanitizeQuote()

				"<big>I	am	great	@	"javascript".	Best's	Best.!</big>"

				input.sanitizeQuote().sanitizeApos()

				"<big>I	am	great	@	"javascript".	Best's	Best.!</big>"

But	this	is	not	a	good	solution.

We	are	hacking		String		and	wishing	that	no	one	else	has	done	so.	If	some	other	developer
or	library	decides	to	hack		String	,	one	of	us	would	be	out	of	luck.	Every	now	and	then	we'd
get	a	strange	output.	A	strange	output	is	the	least	of	our	problems.	A	wrong	output	might
wipe	out	something	important	or	just	get's	thrown	out	or	blocked	by	server.

We	need	to	find	a	way	where	we	return	a	string	after	every	such	operation	and	we	do	not
end	up	cluttering		String	.

TODO:	Add	more	content	here.

EcmaScript

21Convert	HTML	entities	to	character	entities

Problem	-	FizzBuzz
You	are	given	numbers	1	to	100.	You	have	to	print		fizz	,		buzz		or		fizzbuzz		as	per	given
following	conditions.

1.	 If	number	is	multiple	of	3,	print	out		fizz	.
2.	 If	number	is	multiple	of	5,	print	out		buzz	.
3.	 If	number	is	multiple	of	15,	print	out		fizzbuzz	.
4.	 If	nothing	of	above	conditions	satisfy	then	just	print	out	the	number.

There	is	nothing	more	to	do	and	nothing	less	will	work.

Solution
A	very	simple	solution	is	hidden	in	the	problem	itself.

EcmaScript

22FizzBuzz

				function	FizzBuzzEr(){

								for(var	i	=	1;	i	<=	100;	i+=1){

												if(i	%	15	===	0){

																console.log('fizzbuzz');

												}	else	if(i	%	5	===	0){

																console.log('buzz');

												}	else	if(i	%	3	===	0){

																console.log('fizz');

												}	else	{

																console.log(i);

												}

								}

				}

				FizzBuzzEr();

				1

				2

				fizz

				4

				buzz

				fizz

				7

				8

				fizz

				buzz

				11

				fizz

				13

				14

				fizzbuzz

				16

				17

				fizz

			

				many	other	lines

Code	-	A	very	first	and	simple	solution	to	fizzbuzz	problem.

You	see,	that	it	works;	but	it's	very	absurd.	What	happens	when	we	add	another	option?
Even	before	that,	the	code	we	wrote	is	rather	ugly.

Even	though	ugly	it	is	better	than	the	following	one.

EcmaScript

23FizzBuzz

				function	FizzBuzzEr(){

								for(var	i	=	1;	i	<=	100;	i+=1){

												if(i	%	3	===	0){

																console.log('fizz');

												}	else	if(i	%	5	===	0){

																console.log('buzz');

												}	else	if(i	%	15	===	0){

																console.log('fizzbuzz');

												}	else	{

																console.log(i);

												}

								}

				}

Code	-	Challenge	-	What	is	wrong	with	this	code?

You	have	to	figure	out	what	is	wrong	with	code	above	and	that	is	your	task.	Keep	in	mind
that	it	is	your	task	and	you	have	to	do	it.	It	should	be	done	by	you	and	alone.	You	shall	not
seek	any	help	on	this	task	and	neither	shall	it	be	provided	to	you.

Moving	on.

There	is	better	way	to	handle	this	problem.

A	bit	better	solution.

EcmaScript

24FizzBuzz

				function	FizzBuzzEr(){

								var	output	=	'';

								for(var	i	=	1;	i	<=	100;	i+=1){

												if(i	%	3	===	0){

																output	+=	'fizz';

												}

												if(i	%	5	===	0){

																output	+=	'buzz';

												}

												output	=	output.length	===	0	?	i	:	output;

												console.log(output);

												output	=	'';

								}

				}

				FizzBuzzEr();

				1

				2

				fizz

				4

				buzz

				fizz

				7

				8

				fizz

				buzz

				11

				fizz

				13

				14

				fizzbuzz

				16

				17

				fizz

Code	-	Challenge	-	How	does	this	piece	of	code	works?

The	code	above	works.	It	gets	loaded	into	the	memory	and	then	executes	finely.	After	which,
it	creates	the	same	series	of	fizz	buzz	fizzbuzz	and	numbers	as	the	first	program	did.	You
have	to	figure	out	what's	it	doing.

Challenge	-	What	if	add	the	condition	for		i	%	15	===	0		and	then	put		output	+=
"fizzbuzz";	?

A	kick-ass	way	of	solving	FizzBuzz

EcmaScript

25FizzBuzz

Instead	of	we	sealing	fate	of	FizzBuzzEr	function	by	letting	it	squeak		fizz	,		buzz	,
	fizzbuzz		or	number	only,	we	can	give	it	superpower	to	deal	with	the	changing
requirements.

				var	FizzBuzzOptions	=	[

								function(num)	{	return	num	%	3	===	0	?	'fizz'	:	'';	},

								function(num)	{	return	num	%	5	===	0	?	'buzz'	:	'';	}

];

				var	FizzBuzzEr	=	function(options){

								var	output	=	'';

								for(var	i	=	1;	i	<=	100;	i++){

												options.forEach(function(x){

																output	+=	x(i);

												});

												output	=	output.length	===	0	?	i	:	output;

												console.log(output);

												output	=	'';

								}

				}

				FizzBuzzEr(FizzBuzzOptions);

Code	-	KickAss	version	of	FizzBuzz

Go	ahead	and	run	this	code.	This	works	and	is	beautiful.

Advantages	of	the	code	above	are:

1.	 You	can	switch	the	fizz,	buzz	at	your	will.
2.	 You	can	add	more	conditions	as	you	like.	All	you	need	to	do	is	modify		FizzBuzzOptions	

or	pass	your	own	Options.
3.	 We	have	separated	the	actual-work	from	logic.	We	are	providing	logic	in		options	

argument.

That's	pretty	much	it	about	FizzBuzz.

EcmaScript

26FizzBuzz

Problem	-	Implement	stack.
You	will	be	given	data	in	a	comma	delimited	string	and	you	will	have	to	implement	a	stack
based	on	the	values.

We	will	learn	following	thigs:

How	to		split()		a	string.
How	to	create	stack	in	JS.
How	to	hide	data	and	make	it	private.

Solution.
We	need	to	break	down	the	problem.

1.	 Break	string	on	comma.
2.	 Use	broken	string	data	as	input	for	our	stack.
3.	 Deploy	push()	and	pop()	on	our	stack	object.

Let's	just	break	the	string.

				function	getData(inputString)	{

								var	values	=	inputString.split(',');

								return	values;

				};

Code	-	returns	the	values	after	breaking	a	comma	delimited	string.

If	it	was	any	other	language,	we	might	be	writing	the	object	required	for	implementing	stack
or	using	built	in	one.	But	since	it's	JS,	we	don't	need	to.	Let's	implement	our	functionality	for
operating	a	stack.

				function	Stack(inputString)	{

								this.stack	=	getData(inputString);

				}

				Stack.prototype.pop	=	function()	{	return	this.stack.pop();	}

				Stack.prototype.push	=	function(val)	{	this.stack.push(val);	}

Code	-	Implementation	of	stack	in	JS.

EcmaScript

27Implement	stack.

That's	It!	We	can	reduce	the	functionality	even	further	as	we	do	not	need	a		getData()	
function.	We	need	to	provide	a	display	function	to	print	stack	and	a	way	to	join	it	too.	We
need	to	hide	the	data	too.

				function	Stack(inputString)	{

								this.stack	=	inputString.split(',');

				}

				Stack.prototype.pop	=	function()	{	return	this.stack.pop();	}

				Stack.prototype.push	=	function(val)	{	this.stack.push(val);	}

				Stack.prototype.join	=	function(joinVia)	{	return	this.stack.join(joinVia);	}

				Stack.prototype.display	=	function(processor)	{	this.stack.forEach(processor);	}

				var	s	=	new	Stack("A,B,C,D,E,F,G,H");

				undefined

				s.pop();

				"H"

				s.push(10);	s.push("Anubhav");

				undefined

				s.display(function(x){	console.log(x);	});

				undefined

				A

				B

				C

				D

				E

				F

				G

				10

				Anubhav

				s.join('-');

				"A-B-C-D-E-F-G-10-Anubhav"

Code	-		display()	,		join()		implmented.	Security	left.

We	have	managed	to	display	the	data	easily	and	join	the	data	easily.	What	we	are	missing	is
security.	We	can	access		s.stack		out	in	the	open.

EcmaScript

28Implement	stack.

				s.stack

				Array	["A",	"B",	"C",	"D",	"E",	"F",	"G",	10,	"Anubhav"]

				s.stack	=	[1,2,3,null,	undefined,	"great",	"A"]

				Array	[1,	2,	3,	null,	undefined,	"great",	"A"]

				s.join('-')

				"1-2-3---great-A"

Execution	of	code	above	-	shows	that	we	can	access	internal	variable	easily	and	change	it
as	we	need,	maliciously	or	otherwise.

Below	is	the	secure	version.	If	doesn't	make	sense	at	first,	do	not	be	disheartened.	Pick
apart	the	code	piece	by	piece.

EcmaScript

29Implement	stack.

				function	Stack(input)	{

								var	data	=	input.split(',');

								return	(function(store)	{

												return	{

																pop:	function()	{	return	store.pop();	},

																push:	function(x)	{	store.push(x);	},

																display:	function()	{	store.forEach(function(x)	{	console.log(x);	});	},

																join:	function(c)	{	c	=	c	||	'-';	return	store.join(c);	}

												};

								})(data);

				}

				var	stack	=	new	Stack("a,b,c,d,e");

				stack.pop()

				"e"

				stack.display()

				a

				b

				c

				d

				stack.join()

				"a-b-c-d"

				stack.data

				undefined

				stack.store

				undefined

				var	r	=	Stack('a,b,	c,d,e');

				r.join()

				"a-b-	c-d-e"

				r.data

				undefined

				r.store

				undefined

Code	-	Shows	that	stack's	data/input	now	cannot	be	retrieved	via	instance.

The	code	above	is	secure	in	a	sense	that	the	data	cannot	be	tempered	with	via	direct
access.	Thus,	we	have	learned	a	way	to	make	data	private.

EcmaScript

30Implement	stack.

Problem	-	Until	you	find	meaning	of	life.
Given	is	an	array	of	numbers	and	you	have	to	process	each	number	until	you	see	42.	As
soon	as	you	see	42,	stop	the	whole	process.	You	have	found	the	meaning	of	life	and
everything	else,	go	home,	sip	mohitos	and	relax.

Given:

An	array	of	numbers	as	input	argument	data.
A	function		processor		that	takes	a	number.
Write	a	function	named		untilAnswer()		that	will	run	and	find	solution.

Solution
Let's	break	down	the	problem.

An	array	of	number	is	given	as	argument		data		a	function	named		processor		and	our
function	has	to	be	named		untilAnswer	.

				function	untilAnswer(data,	processor)	{

								//functionality	here.

				}

Code	-	Basic	structure.

Now,	we	need	to	iterate		data		array	that	will	produce	the	number	turn-by-turn	and	feed	that
number	to		processor		function.

	forEach		seems	like	a	good	enough	function	for	iteration	and	passing	down	the	values.

				function	untilAnswer(data,	processor)	{

								data.forEach(function(x){

												if(x	===	42){

																return;

												}

												processor(x);

								});

				}

Code	-	Done!	But...

EcmaScript

31Until	you	find	meaning	of	life.

This,	code	above,	is	a	clean	solution;	except	that	it's	inaccurate.

Try	running	it	for	the	cases	where	there	are	numbers	other	than	42	after	a	42	in	an	array	e.g.
	[1,	2,	3,	4,	5,	42,	43,	44]	.

This	teaches	a	valuable	lesson	about		forEach		and	concept	of		Function-In-Function	.
	forEach		runs	for	every	element	in	the	given	array.	When	we	return	from	the	inner	function	it
returns,	without	processing,	only	when	input		x		is	42.	In	all	other	cases,	it	will	process	the
number	passed	to	it.

We	need	to	keep	track	of	whether	we	have	seen	a	42	or	not.

				function	untilAnswer(data,	processor)	{

								var	seen	=	false;

								data.forEach(function(x){

												if(x	===	42){

																seen	=	true;

												}

												if(!seen){

																processor(x);

												}

								});

				}

Code	-	Done!	But...

We	have	used	a	boolean	variable		seen		to	know	if	we	have	seen	a	42	and	then	if	we	have,
we	do	not	do	anything.

Figure	Out:	There	is	a	problem	with	the	code	above	that	you	have	to	figure	out.	Think	what
	forEach		does	and	why	our	processing	is	inefficient.

Below	is	a	better	way	to	do	what	we	did	above.	It's	clean	and	accurate.	Take	a	look	at	code
above	and	below	and	figure	out	the	difference.

EcmaScript

32Until	you	find	meaning	of	life.

				//	var	input	=	[1,	2,	88,	42,	99];

				var	untilAnswer	=	function	(data,	processor)	{

								for(var	i	=	0,	len	=	data.length;	i	<	len	&&	data[i]	!==	42;	i	+=	1)	{

												processor(data[i]);

								}

				}

				//	var	processor	=	function(x)	{

				//				console.log(x);

				//	}

				//	untilAnswer(input,	processor);

Code	-	Right	way	to	go	about	doing	it.

EcmaScript

33Until	you	find	meaning	of	life.

Problem	-	Generate	range	of	numbers.
We	need	to	create	a	function		range		that	generates	numbers	in	the	range		x		and		y	
passed	to	it.

Conditions

It	should	be	able	to	handle	negative	to	positive,	positive	to	positive,	positive	to	negative,
negative	to	negative	number	generation.
It	should	be	able	to	generate	numbers	that	are		step		argument	away.
Numbers	generated	should	be	inclusive.

In	this	problem	you	will	learn:

How	to	handle	wrong	inputs.
Moral	dillemmas	of	choosing	solution	strategy.
Issues	that	arise	from	a	bad	design	choice.
How	to	create		range		functionality	modularly.

Solution
Let's	start	by	writing	down	the	conditions.

EcmaScript

34Generate	range	of	numbers.

Case start	from end	at step action Example

1 zero positive positive generate range(0,	10,	1)	=>	[0,	1,
2,	3,	4,	5,	6,	7,	8,	9,	10]

2 zero negative negative generate range(0,	-4,	-1)	=>	[0,
-1,	-2,	-3,	-4]

3 zero positive negative fail range(0,	10,	-1)	=>
throw	error

4 zero negative positive fail range(0,	-4,	1)	=>	throw
error

5 positive
(smaller)

positive
(greater) positive generate range(9,	10,	1)	=>	[9,

10]

6 negative
(bigger)

negative
(smaller) negative generate range(-3,	-4,	-1)	=>	[-3,

-4]

7 positive
(greater)

positive
(smaller) negative generate range(10,	9,	-1)	=>	[10,

-9]

8 negative
(smaller)

negative
(bigger) positive generate range(-10,	-9,	1)	=>

[-10,	-9]

9 positive
(smaller)

positive
(greater) negative fail range(9,	10,	-1)	=>

throw	error

10 negative
(bigger)

negative
(smaller) positive fail range(-3,	-4,	1)	=>

throw	error

11 positive
(greater)

positive
(smaller) positive fail range(10,	9,	1)	=>

throw	error

12 negative
(smaller)

negative
(bigger) negative fail range(-10,	-9,	-1)	=>

throw	error

Table	-	Conditions	of	operation	of	program.

Now,	we	can	begin.	We	need	to	generalize	the	above	12	cases.

We	can	put	cases	in	two	categories	by	their	execution	result:	Failure	and	Success.

We	can	generalize	that:

step	value start	<relation>	end output

positive start	<	end generate

positive start	>	end fail

negative start	>	end generate

negative start	end fail

This	creates	two	specific	issues	for	us:

EcmaScript

35Generate	range	of	numbers.

1.	 What	to	do	in	case	where	step	is	zero?
2.	 What	to	do	in	case	where	start	is	equal	to	end?

We	are	going	to	define	what	does	it	means	to	have	step	equal	to	zero.

When	step	is	zero,	we	know	the	start	and	end	but	we	are	being	told	that	we	do	not	have	to
move	in	any	direction.	We	can	interpret	this	in	two	ways.

Return	[start,	end]	or
Throw	error.

Let's	tackle	first	interpretation.	When	step	is	zero,	we	cannot	move	in	any	direction.	That
means	we	cannot	generate	range.	But,	we	know	that	we	are	supposed	to	generate	a	range
that	includes	starting	and	ending	numbers.	This	is	a	moral	dilemma.	The	way	we	have
structured	our	program,	we	have	created	this	problem.	Consider	if	we	have	made	conditions
in	which	both	the	numbers	were	not	included:

range(0,	10,	1)	generates	[1,	2,	3,	4,	5,	6,	7,	8,	9]

But,	instead	we	went	for:

range(0,	10,	1)	generates	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

And	thus	our	problem	right	now	is:

Should	we	generate		[1,	10]		or		throw	error		for		range(1,	10,	0)	?

I	leave	you	to	decide	your	implementation.	I	am	going	to	throw	error,	rationale	being	that	it's
not	returning	a	range.	You	could	argue	against	it	and	I	welcome	it.

This	brings	us	to	next	thing.

When	start	===	end,	this	pose	another	moral	problem.

Should	we	generate		[10]		or		throw	error		for		range(10,	10,	anyvalue-for-step)	?

Again,	we	have	ourselves	created	this	problem.	If	we	had	excluded	the	end	or	start	or	both,
we	could	have	avoided	this	problem.

I	am	going	to	generate		[10]	.	You	are	welcome	to	critize	this	decision	and	come	up	with
your	own.

EcmaScript

36Generate	range	of	numbers.

				var	range	=	function(startFrom,	endAt,	step)	{

								var	result	=	[];

								if(step	===	0)	{

												throw	new	Error('Step	cannot	be	zero');

								}	else	if(step	>	0)	{

												/*	Tackle	cases	where	we	are	going	upwards	from	start	to	end.	*/

								}	else	if(step	<	0)	{

												/*	Tackle	cases	where	we	are	going	downwards	from	start	to	end	*/

								}

				};

Code	-	Skeleton	of	what	we	are	going	to	do.

We	are	here.	We	are	again	at	the	decision-intersection:	should	we	put	all	of	the	code	in
single		range		function	or	create	multiple	functions?

I	am	going	to	create	multiple	ones.	You	can	choose	whichever	suits	you	best.

EcmaScript

37Generate	range	of	numbers.

				var	rangeUpwards	=	function(start,	end,	step)	{

								var	result	=	[];

								for(var	i	=	start;	i	<=	end;	i	+=	step)	{

												result.push(i);

								}

								return	result;

				};

				var	rangeDownwards	=	function(start,	end,	step){

								var	result	=	[];

								for(var	i	=	start;	i	>=end;	i	+=	step)	{

												result.push(i);

								}

								return	result;

				};

				var	range	=	function(start,	end,	step)	{

								var	result	=	[];

								if(step	===	0)	{

												throw	new	Error("Step	cannot	be	zero.");

								}	else	if(step	>	0)	{

												if(start	<=	end){

																return	rangeUpwards(start,	end,	step);

												}	else	{

																throw	new	Error("Start	cannot	be	greater	than	end,	if	stepping	is	positive."

												}

								}	else	{

												if(start	>=	end)	{

																return	rangeDownwards(start,	end,	step);

												}	else	{

																throw	new	Error("Start	cannot	be	smaller	than	end,	if	stepping	is	negative."

												}

								}

				};

Code	-	Full	functionality.

EcmaScript

38Generate	range	of	numbers.

				range(0,	10,	1)

				Array	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	1	more…]

				range(10,	0,	-1)

				Array	[10,	9,	8,	7,	6,	5,	4,	3,	2,	1,	1	more…]

				range(10,	10,	1)

				Array	[10]

				range(0,	10,	0)

				Error:	Step	cannot	be	zero.

				range(10,	-10,	1)

				Error:	Start	cannot	be	greater	than	end,	if	stepping	is	positive.

				range(-10,	10,	-1)

				Error:	Start	cannot	be	smaller	than	end,	if	stepping	is	negative.

Output	-	As	expected.

Let's	go	back	to	code	for	while.	I	hope	you	noticed	that		rangeUpwards		and		rangeDownwards	
are	exactly	the	same	except	terminating	condition.	I	want	to	tell	you	that	it's	deliberate	till
now.	I	wanted	you	to	understand	that	in	both	cases,	we	need	to	go	from	start	to	end	and
step	needs	to	be	added.

We	need	to	pass	the	terminating	condition	as	argument.

Now	that	you	know,	you	can	remove	the	redundant	functionality.	You	can	try	to	club	the
conditions	together	too.

Here's	how	I'd	do	it.

EcmaScript

39Generate	range	of	numbers.

				var	generateRange	=	function(start,	step,	endCondition)	{

								var	result	=	[];

								for(var	i	=	start;	endCondition(i);	i	+=	step)	{

												result.push(i);

								}

								return	result;

				};

				var	range	=	function(start,	end,	step)	{

								var	result	=	[];

								if(step	===	0)	{

												throw	new	Error("Step	cannot	be	zero.");

								}	else	if(step	>	0)	{

												if(start	<=	end){

																return	generateRange(start,	step,	function(i)	{	return	i	<=	end;	});

												}	else	{

																throw	new	Error("Start	cannot	be	greater	than	end,	if	stepping	is	positive."

												}

								}	else	{

												if(start	>=	end)	{

																return	generateRange(start,	step,	function(i)	{	return	i	>=	end;	});

												}	else	{

																throw	new	Error("Start	cannot	be	smaller	than	end,	if	stepping	is	negative."

												}

								}

				};

Code	-	Full	functionality.

				range(0,	5,	1)

				Array	[0,	1,	2,	3,	4,	5]

				range(10,	5,	-1)

				Array	[10,	9,	8,	7,	6,	5]

				range(10,	10,	0)

				Error:	Step	cannot	be	zero.

				range(10,	10,	1)

				Array	[10]

				range(10,	-10,	1)

				Error:	Start	cannot	be	greater	than	end,	if	stepping	is	positive.

				range(-10,	10,	-1)

				Error:	Start	cannot	be	smaller	than	end,	if	stepping	is	negative.

EcmaScript

40Generate	range	of	numbers.

We	have	successfully	generated	a	range	function	that	covers	all	or	our	cases.

EcmaScript

41Generate	range	of	numbers.

Problem	-	Returning	arithmetic	functions
based	on	input	operators.
Input	format:	string	containing,	on	operator	and	two	operands.

Example:	10+20;	30-49;	19*9	etc.

Output:	30	(function	definition);	-11	(function	definition);	171	(function	definition)
etc.

In	this	problem	we	will	learn:

How	to	get	numbers	out	of	string	using	regex.
How	to	find	either	of	+,-,*,/,%	in	string	via	regex.
How	to	return	a	function.
How	to	do	a	multiway	switch.
How	to	sort	an	array	of	numbers.
How	to	sort	an	array	of	strings.

EcmaScript

42Returning	arithmetic	functions	based	on	input	operators.

Solution	for	Returning	arithmetic	functions
based	on	input	operators.

Logic
The	problem	can	be	divided	in	two	sub-problems.

1.	 Find	what	operator	is	used.
2.	 Return	appropriate	function.

We	will	need	Regular	Expressions	for	first	sub-problem.	For	the	second	problem	we	need	to
understand		switch		and	functions.

Let's	start	from	functions.	Functions	are	first	order	citizens	of	JS	language.	They	can	be
stored	as	variables,	called	via	another	variable,	returned	from	functions	and	passed	around
in/to	functions.

One	simpler	example	is	sorting	an	array.

				var	arr	=	range(10,	1,	-1);

				/*	range	is	from	Generate	range	of	numbers	problem	*/

				arr;

				Array	[10,	9,	8,	7,	6,	5,	4,	3,	2,	1]

				function	comparer(a,	b)	{	return	a-b;	}

				var	sortNumberFunction	=	comparer;

				arr.sort(sortNumberFunction);

				arr;

				Array	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

Code	-	Example	where	we	pass	a	function	as	an	argument.

But	we	have	yet	to	return	a	function.	Let's	make	a	decider-function	that	looks	at	the	type	of
elements	in	an	array	and	then	returns	appropriate	compare	function.

EcmaScript

43Solution	for	Returning	arithmetic	functions	based	on	input	operators.

				function	decideWhichCompare(arr)	{

								var	compareFunction	=	function()	{	};

								if(typeof	arr[0]	===	typeof	10){

												compareFunction	=	function(a,	b)	{	return	a	-	b;	};

								}	else	if(typeof	arr[0]	===	typeof	"string")	{

												compareFunction	=	function(a,	b)	{	return	a.length	-	b.length;	};

								}

								console.log("Returning:	",	compareFunction);

								return	compareFunction;

				}

				var	numbers	=	range(10,	1,	-1);

				var	strings	=	["He",	"Like",	"I",	"Likes",	"JavaScript",	"."];

				var	sortMyData	=	function(dataArray)	{

								var	compareFunction	=	decideWhichCompare(dataArray);

								dataArray;	//Since	I	am	in	FireFox's	console.

								dataArray.sort(compareFunction);

								dataArray;	//Since	I	am	in	FireFox's	console.

				};

				sortMyData(numbers);

				sortMyData(strings);

Code	-	That	returns	a	function	based	upon	input	variable's	data	type.

We	are	successful	in	returning	a	function	in	JavaScript.	We	can	use	this	technique	to	solve
our	problem.	Finally!!!

				var	whichFunction	=	function(op)	{

								switch(op)	{

								case	"+":	return	function(a,	b)	{	return	a	+	b;	};

								case	"-":	return	function(a,	b)	{	return	a	-	b;	};

								case	"*":	return	function(a,	b)	{	return	a	*	b;	};

								case	"/":	return	function(a,	b)	{	return	a	/	b;	};

								case	"%":	return	function(a,	b)	{	return	a	%	b;	};

								default:	return	function()	{	console.log("Unknown	operation.");	};

								}

				}

Code	-	Function	that	returns	arithmetic	functions	based	upon	input	operators.

Now,	we	need	to	figure	out	a	way	to	know	which		op		is	passed	to	us	in	the	input	string.

EcmaScript

44Solution	for	Returning	arithmetic	functions	based	on	input	operators.

				var	outputFunction	=	function(input)	{

								var	regex	=	new	RegExp(/(\d+)([+-/*%])(\d+)/);

								var	match	=	input.match(regex);

								var	opFunction	=	whichFunction(match[2]);

								console.log(opFunction(parseInt(match[1]),	parseInt(match[3])),	"("	+	opFunction	+	

				};

				outputFunction("10+20")

				30	(function	(a,	b)	{	return	a	+	b;	})

				outputFunction("10/20")

				0.5	(function	(a,	b)	{	return	a	/	b;	})

				outputFunction("10%20")

				10	(function	(a,	b)	{	return	a	%	b;	})

				outputFunction("10-20")

				-10	(function	(a,	b)	{	return	a	-	b;	})

				outputFunction("10*20")

				200	(function	(a,	b)	{	return	a	*	b;	})

				outputFunction("10/0")

				Infinity	(function	(a,	b)	{	return	a	/	b;	})

				outputFunction("0/0")

				NaN	(function	(a,	b)	{	return	a	/	b;	})

Code	-	Working	code.

TODO:	Add	explanation	why	match	works	with	index	above	as	it	did.	TODO:	Explain	how
passing	"10+20+30"	will	not	result	in	60	but	only	30.	First	operation	will	be	performed.

EcmaScript

45Solution	for	Returning	arithmetic	functions	based	on	input	operators.

Problem	-	Summing	it	up.
We	have	general	sum	function.

				function	sum(x,	y)	{

								return	x	+	y;

				}

We	want	to	be	able	to	add	a	lot	more	numbers,	but	right	now	we	can	add	only	two	numbers
at	a	time.

1.	 Make	us	able	to	call	sum	function	like		sum(2,	3,	4,	5,	6,	7,	8)		and	get	the	output.
2.	 Make	us	able	to	create	functions	that	add	with	a	specific	number,		var	add4To	=	sum(4);	

should	create	a	new	function	such	that		add4To(6)	===	10	.

Solution
Initial	code	is	fixed-arity	code.	We	need	to	fix	that	first,	so	we	will	use	arguments.

				var	sum	=	function(start)	{

								var	sum	=	0;

								for(var	i	=	0;	i	<	arguments.length;	i++)	{

												sum	+=	arguments[i];

								}

								return	sum;

				}

Code	-	Where	we	find	the	sum	of	the	numbers	given	to	us.

The	code	above	has	a	flaw.	We	are	not	using		start	.	Let's	quickly	fix	that.

				var	sum	=	function(start)	{

								var	sum	=	start;

								for(var	i	=	1;	i	<	arguments.length;	i++)	{

												sum	+=	arguments[i];

								}

								return	sum;

				}

EcmaScript

46Summing	it	up.

Code	:	Fixed	code.

[TODO:]

EcmaScript

47Summing	it	up.

Document	Object	Model
JavaScript	is	a	programming	language.	HTML	is	a	markup	language.	DOM	is	bridge
between	the	two.	DOM	is	what	glues	browsers	and	users	together	in	an	interactive	web
application.	Without	DOM,	a	web	page	is	just	a	text	document.

DOM	+	JavaScript	provide	us	the	ability	to	create	interactive	web	applications.

EcmaScript

48Document	Object	Model

Problem	-	Fetch	all	the	elements	of	a
specific	type	from	the	loaded	page.
We	want	to	fetch	all	the		div		in	the	web	page.

We	are	going	to	use	Developer's	Console	that	you	can	activate	via	F12	or	browser	settings
or	browser	menu.

Solution

				var	allDivsInPage	=	document.getElementsByTagName('div');

				undefined

				allDivsInPage

				HTMLCollection	[<div#newtab-customize-overlay>,	<div.newtab-customize-panel-container

Code	-	*Get	all	the		div		element	in	the	document.

We	can	see	that,	the	page	I	had,	had	more	than	51		div		elements	on	it.	Printing	them	here
doesn't	make	any	sense,	so	we	will	skip	it.	We	are	going	to	try	still;	to	make	a	point.

				document.getElementsByTagName('div').forEach(function(x)	{

								console.log(x);

				})

				TypeError:	document.getElementsByTagName(...).forEach	is	not	a	function

Code	-	Fails	because	returned	value	though	look	like	an	array,	is	not	an	array

That's	a	bummer.	Does	it	have	a	length	property?

				document.getElementsByTagName('div').length

				61

Code	-	Shows	that	our	object	does	have	a	property	named	length,	but	doesn't	iterate	over	it.

Well,	now	if	you	remember	we	did	a	similar	problem	in	Chapter	1.	In	that	problem	we	had	an
object	that	was	not	array,	had	a	length	property	and	access	via	numerical	indices.

EcmaScript

49Fetch	all	the	elements	of	a	specific	type	from	the	loaded	page.

We	need	to	check	if	it	can	be	accessed	via	index.

				document.getElementsByTagName('div')[0]

				<div	id="newtab-customize-overlay">

Code	-	Shows	us	that	data	can	be	accessed	via	index

Now,	we	know	the	trick.

				[].forEach.call(allDivsInPage,	function(x)	{	console.log(x);	})

				undefined

				<div	id="newtab-customize-overlay">

				<div	class="newtab-customize-panel-container">

				<div	id="newtab-customize-panel"	orient="vertical">

				...

				...

				...	a	lot	of	lines

Code	-	Shows	that	we	can	still	loop	through	the	returned	array-like	object.

EcmaScript

50Fetch	all	the	elements	of	a	specific	type	from	the	loaded	page.

Chapter	3	-	Canvas	API
Canvas	API	is	what	HTML	5	brought	to	us:	a	playground	for	creating	lines	and	shapes	in
browser.	It	can	do	more.

Advantages

It	let's	you	create	paint	like	applications	in	browsers.
It's	accessible	via	JavaScript,	thus	making	it	a	good	tool	for	us	JS	developers.

Disadvantages

It	is	stateful.

We	will	learn	Canvas	API	via	projects.	One	such	project	is	JSPaint;	I	wrote	js-paint
application	to	learn	about	canvas	api.

We	will	go	through	the	history	of	projects	and	re-create	our	own	applications.

EcmaScript

51Canvas	API

https://jspaint.github.io

Chapter	4	-	CoffeeScript
CoffeeScript	is	a	language	that	compiles	into	JavaScript,	which	makes	it	JS	on	steroids.	It's
cool	and	takes	less	space.

Advantages

Compiles	into	correct	JavaScript.
Once	mastered,	you	won't	want	to	go	back	to	just	JavaScript.

Disadvantages

One	more	style	of	syntax	to	be	learned.
Learning	half	of	it	makes	for	very	buggy	output.

EcmaScript

52CoffeeScript

http://coffeescript.org/

Resources
In	this	chapter,	you	will	find	all	the	resources	you	need	about	JavaScript.

jQuery
Source	code

EcmaScript

53Resources

http://jquery.com/
https://github.com/jquery/jquery

jQuery
You	can	start	from	here.

1.	 Official	site
2.	 Source	code

Go	ahead.

Building	jQuery	source	code.
1.	 fork	the	source	code.
2.	 	git	clone		it.
3.	 	cd		to	dir	&&		npm	install		&&		grunt		it.

There	you	have	freshly	made	jQuery	in	your		dist/		folder.

What	is	jQuery?
It	is	a	cross	browser	library.
It	has	very	good	API.
It	is	(a	tad	bit)	slower	than	just-JavaScript.
It	helps	in	web	development	greatly.
It	is	lightweight.
It	is	CSS3	compliant.

From	jQuery.com

jQuery	is	a	fast,	small,	and	feature-rich	JavaScript	library.	It	makes	things	like	HTML
document	traversal	and	manipulation,	event	handling,	animation,	and	Ajax	much
simpler	with	an	easy-to-use	API	that	works	across	a	multitude	of	browsers.	With	a
combination	of	versatility	and	extensibility,	jQuery	has	changed	the	way	that	millions	of
people	write	JavaScript.

EcmaScript

54jQuery

http://jquery.com/
https://github.com/jquery/jquery
http://jquery.com/

EcmaScript	Programming	Style	Guides
These	guides	are	from	online	resources.

There	are	two	main	parts:

Programming	Style	Guide.
These	guides	tell	how	to	style	your	code.	These	are	choices.

For	example,		function	(){	};		vs		function	()	{	};		-	notice	the	space	after
)	.

Programming	Language	Guide.
These	guides	tell	what	to	use	and	what	not	to	use	from	language.
These	are	general	truths;	and	pain	points	if	ignored.

Do	not	use		with	.	It's	context	dependent.
Use		var		in	ES	5.	Not	using	it	is	context	dependent.

	

There	are	guides	for	version	5	and	onward:

ES	5
ES	2015	(ES	6	/	JS	6	-	please	don't	use	these	names)
ES	2016
ES	2017

EcmaScript

55Programming	Style	Guide

Programming	Style	Guide	for	ES	5
Note:	This	is	not	preaching.	You	are	free	to	pick	what	you	like.	End	goal	is	to	stick	to
what	you	pick.	Look,	programming	is	hard.	There	are	enough	problems	to	solve
already;	do	not	create	problems	by		reckless	patching	.	Pick	a	style	that	suits	you	and
your	team	and	you	intended	code-audience	and		stick	to	it	.

This	guide	serves	a	simple	purpose:	to	let	you	have	consistency	in	your	code.

The	information	in	this	chapter	can	be	summed	up	in	two	categories:		Do		and		Don't	Do	.

	

Table	-	Do	and	Don't	do	of	JavaScript.

Do Don't

Use	var	to	declare	local
variables. Initialize	variables	in	function	without	var.

Use	camelCase	for	variables
and	functions.

Mix	camelCase	with	PascalCase	and
under_score_case.

Use	a		Constants		Object	to
define	constants.

Use	UPPER_CASE_FOR_CONSTANTS	for
constants.	Really?

Get	rid	of		eval()		and		with()	
if	you	don't	really	need	them. Use		eval()		to	execute	user-input	code.

Use		options		object	if
argument	list	becomes	lengthy.

Create	functions	and	APIs	with	10,	20	etc.
arguments.	That's	just	competing	with	older	Windows
API.

Create	your	own	subtypes	that
consume	built	in	types. Add	stuff	to	built	in	objects.

Put	'use	strict';	at	top	of	your
script. Ditch	strict	mode	because	it's	easy.

Use	closures	to	hide	access	to
data.

Put	everything	at	global	scope	or	outside	it's
intended	usage	scope.

	

	

Table	-	Do	and	Don't	do	of	Programming	in	general.

EcmaScript

56ES	5

Do Don't

Talk	to	your	team. Force	your	team	to	use	your	style.

Write	functions	to	avoid	code
duplication. Copy-paste	code.

Create	as	many	objects	as
logically	required.

Put	everything	in	a	master	object	or	create	objects
out	of	free	will.

Practice	DRY	principle Copy-paste-hack	code.

Practice	YAGNI	principle
mercilessly. Create	interfaces	that	you	might	one	day	need.

Use	 	var	.
Use	var	for	variables.	Without	them	some	environments	put	variables	in	global	scope.	Bad
Bad	Thing.

Use	camelCase.
Use	camelCase	for	variables	and	functions.	Objects	and	Constructor	functions	should	be
kept	PascalCased.	JavaScript	doesn't	understand	hyphenated-casing,	so	that's	a	bust.
However	underscore_casing	is	not	a	bad	idea	generally,	but	people	are	accustomed	to	see
camelCase	every	where	in	JS.

Use	Constants	Object	for	constants.
Contrary	to	popular	belief	in	and	status	of	UPPER_CASE_CONSTANTS,	use	a	Constants
object	and	put	your	constants	there.

Semi-Colons.
The	rules	related	to	being	able	to	deliberately	leave	a	semi-colon	are	not	that	much.	But
please	don't.	Use	semi-colons	as	if	they	were	mandatory.	There	is	no	point	in	showing	off
your	special-case-retentive-memory.

EcmaScript

57ES	5

Nested	functions.
JavaScript	wouldn't	be	JavaScript	without	them.

Wrapper	objects	for	primitive	types.
Please	don't.

	eval()	.
Please	don't.

	with()	

Please	don't.

BackSlash	for	multiline	string.
Please	don't.

Adding	stuff	to	prototypes	of	built-in
types.
Please	don't.

Argument	list.
Upto	three	arguments	are	fine	in	argument	list.	If	argument	list	contains	more	than	three
arguments,	consider	options	object.

Defining	functions	in	a	loop.

EcmaScript

58ES	5

Please	don't.

Google	Style	Guide	says:
BE	CONSISTENT.

If	you're	editing	code,	take	a	few	minutes	to	look	at	the	code	around	you	and	determine
its	style.	If	they	use	spaces	around	all	their	arithmetic	operators,	you	should	too.	If	their
comments	have	little	boxes	of	hash	marks	around	them,	make	your	comments	have
little	boxes	of	hash	marks	around	them	too.

The	point	of	having	style	guidelines	is	to	have	a	common	vocabulary	of	coding	so
people	can	concentrate	on	what	you're	saying	rather	than	on	how	you're	saying	it.	We
present	global	style	rules	here	so	people	know	the	vocabulary,	but	local	style	is	also
important.	If	code	you	add	to	a	file	looks	drastically	different	from	the	existing	code
around	it,	it	throws	readers	out	of	their	rhythm	when	they	go	to	read	it.	Avoid	this.

EcmaScript

59ES	5

https://google.github.io/styleguide/javascriptguide.xml

ES	5	-	Programming	Style	Rules

EcmaScript

60ES	5	-	Programming	Style	Rules

ES	5	-	Programming	Language	Rules
Use		var		for	variables	that	you	declare	in	functions.

Cleaner		global		object.
	var		makes	variables	local.
Not	using		var		makes	your	code	context	dependent	and	fragile.

EcmaScript

61ES	5	-	Programming	Language	Rules

var

What	happens	when	you	do	not	use	var?
In	non-strict	/	sloppy	mode,	your	variable	is	defined	in	global	scope.	In	browsers,	this	is
usually		window	.

				function	add(a,	b){

						sum	=	a	+	b;

						return	sum;

				}

				console.log(add(10,	11),	sum,	window.sum,	sum	===	window.sum);

				21	21	21	true	//	both	in	firefox/firebug	and	chrome	console.

Code	-	Above	code	manages	to	create	a	sum	variable	in	global	scope	i.e.	window.

	

In	strict	mode,	not	using		var		to	declare	a	variable	is	an	error.

				(function(){

						'use	strict';

						function	add2(a,	b){

								sum2	=	a	+	b;

								return	sum2;

						}

						console.log(add2(10,	11),	sum2,	window.sum2,	sum2	===	window.sum2);

						ReferenceError:	assignment	to	undeclared	variable	sum2	//	In	firefox/firebug

						Uncaught	ReferenceError:	sum2	is	not	defined	//	In	chrome	console.

				})();

Code	-	Above	code	manages	to	throw	an	error	in	strict	mode.

try	with:		var	sum2	=	a	+	b;		instead	of		sum2	=	a	+	b;	.

EcmaScript

62ES	5	-	Programming	Language	Rules

In	strict	mode,	we	are	not	even	going	to	get	output	without	var.	Function	itself	will	throw	error
on	execution.	If	we	add	var,	then	output	of	function	will	be	achieved,	but	even	then,	that
variable	is	going	to	stay	local.	That	means	less	clutter	at	global	level.

Output	of	not	using		var		depends	upon	whether	your	code	is	in	sloppy	or	strict	mode.	Your
code	might	not	have	freedom	of	knowing	which	mode	it	will	execute	in.	Thus,	making	your
code	fragile.	Don't	code	fragile.

Verdict
Use		var		for	variables	that	you	declare	in	functions.

Cleaner		global		object.
	var		makes	variables	local.
Not	using		var		makes	your	code	context	dependent	and	fragile.

EcmaScript

63ES	5	-	Programming	Language	Rules

ES	2015

EcmaScript

64ES	2015

ES	2016

EcmaScript

65ES	2016

	Introduction
	First Chapter
	Getting rid of repetition
	Reverse a string
	Creating an empty array with length > 0
	Get longest name in an array
	Replace a character in a string
	Convert HTML entities to character entities
	FizzBuzz
	Implement stack.
	Until you find meaning of life.
	Generate range of numbers.
	Returning arithmetic functions based on input operators.
	Solution for Returning arithmetic functions based on input operators.

	Summing it up.

	Document Object Model
	Fetch all the elements of a specific type from the loaded page.

	Canvas API
	CoffeeScript
	Resources
	jQuery

	Programming Style Guide
	ES 5
	ES 5 - Programming Style Rules
	ES 5 - Programming Language Rules

	ES 2015
	ES 2016

