
1
div
wonder
what can you imagine with just one div and CSS?

Intent and focus is on exploring shapes in CSS.

Anubhav Saini

Th eory
What are block elements or objects in HTML &
CSS?

 Any elements that can take shape of a box
and have a line break before and aft er are known as
block elements or objects.

What are width and height properties for?

 Th ey apply to block elements and make
blocks as wide and high as specifi ed by width and
height values.

 We will use pixels or percentages in this
book.

Note: for more about these properties or values
search internet, read w3c specifi cations or wait for
the Hope : Th e Web Design Book, part 3.

What is border property?

 For an element it specifi es the borders on all
four sides. It is shorthand for border-width, border-
style and border-color. For example:

 border: value-1 value-2 value-3;
means:
 border-top: value-1 value-2 value-3;
 border-right: value-1 value-2 value-3;
 border-bottom: value-1 value-2 value-3;
 border-left: value-1 value-2 value-3;
where:
 border-[t|r|b|l]: value-1 value-2 value-3;
means:
 border-[t|r|b|l]-width: value-1;
 border-[t|r|b|l]-style: value-2;
 border-[t|r|b|l]-color: value-3;
example:
 border: 50px solid red;
sets creates red colored, solid, 50 pixels wide border
on all four sides.

more details on border are beyond this book, you
can read W3C specifi cation, online blogs or wait for
my books Hope 2 or 3 for it.

What is border-radius propery?

It specifi es the radius of the border. If it is equal to
the width of border and that element has 0 width
and 0 height then it becomes a circle.

 Negative radius is invalid.

 border-radius: top-left top-right bottom-
right bottom-left ;

What is box-shadow propery?

 Creates shadows for the box, shadows are
identical to the box. You can create as many as you
wish, a fact that we will fi nd very useful.
 Padding, margin, height and width of box
do aff ect the shadow of the box.

What are -webkit- properties?

 -webkit- is vendor specifi c prefi x that is used
for the properties that are experimental in one or
other sense.

What is background-color propery?

 It sets the background color for the box.
I would have told you that it is uninheritable but
shines through children elements, but since this
books is about one single div, inheritance is kind of
out of it’s reach and or goals.

What is transparent color?

 It is any hue with 0 alpha channel value. I
use RGBA (0, 0, 0, 0) for transparent color of which,
transparent keyword is synonym
 It is disparate from opacity.

Square
 using height/width

<!DOCTYPE html>
<html>
 <head>
 <meta charset=”utf-8” />
 <title>code square</title>
 <style type=”text/css”>
 #protagonist{
 background-color: Black;
 height: 100px;
 width: 100px;
 }
 </style>
 </head>
 <body>
 <div id=”protagonist”> </div>
 </body>
</html>

Th is is the last time we are seeing complete code in
example, from now on we will deal with CSS code
only.

It’s output will look like this:

 using border

 background-color: none;
 width: 0px;
 height: 0px;
 border: 50px solid black;

It will generate same black box like shown in fi gure
1.

Rounded Square
 We will use border squares from now on.

Add border-radius: 15px; to the code 2.

 background-color: none;
 width: 0px;
 height: 0px;
 border: 50px solid black;
 border-radius: 15px;

Th is will curve the edges giving them a nice
rounded border. A good visual treat in the world of
plain old boxes.

If you continue increasing the radius of the browser,
the more rounded it will become. Let’s give it 35
pixel radius:

 border-radius:
fi g 1

code 1

code 2

code 3

fi g 2

case 2.a high rectangle using W/H

 width: 100px;
 height: 200px;
 background-color: black;

case 2.b and using border and W/H

 background-color: black;
 width: 00px;
 height: 100px;
 border: 50px solid black;

case 2.c again using only border

 background-color: none;
 width: 0px;
 height: 0px;
 border-width: 100px 50px;
 border-style: solid;
 border-color: black;

All of the above will create same output as follows:

Rectangle

 Rectangle can be created using height and
width properties. But unlike square we have to pro-
vide diff erent values thus two types of rectangles are
possible, wide and high. Also, we can use W/H and
or defi ne border to create a rectangle . Let’s see wide
then high in all 3 ways:

case 1.a wide rectangle using W/H

 width: 200px;
 height: 100px;
 background-color: black;

case 1.b and using border and W/H

 background-color: black;
 width: 100px;
 height: 0px;
 border: 50px solid black;

case 1.c again using only border

 background-color: none;
 width: 0px;
 height: 0px;
 border-width: 50px 100px;
 border-style: solid;
 border-color: black;

All of the above will create same output as follows:

We can acthieve high rectangle by fl ipping values in
all three cases above.

Smooth Edge Square
 We will take code from square example #2
and add border-radius: 15px; to CSS rules.

 #protagonist{
 background-color: none;
 width: 0px;
 height: 0px;
 border: 50px solid black;
 border-radius: 15px;
 }

Th is will smoothen the edges of border. Th is will
not work with square example #1, because there is
no border to modify at all in that example.

We can increase radius to 25 pixels to make it a bit
more rounded.

 border-radius: 25px;

 border-radius: 35px;

which brings us to:

Circle
 If we take border radius too far upto the
point where it is equal to the border width, we will
end up creating a circle.

 #protagonist{
 background-color: none;
 width: 0px;
 height: 0px;
 border: 50px solid black;
 border-radius: 50px;
 }

Isosceles triangle
 Isosceles triangles are those with two sides
same, with this in mind, we will create four triangles
that will be pointing diff erent directions namely
top, right, bottom and left . A triangle in our book
faces top when it’s tip is in that direction. Question
is which tip? Obvious answer would be one that is
made up of two equal in length sides.

 Pay close attention, we are about to blow up
the border shorthand notation.

#protagonist{
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent transparent black
transparent;
 border-width: 0px 25px 50px 25px;
}

And it will look like:

border-width: 25px 0 25px 50px;

will generate right isosceles triangle:

 border-width: 50px 25px 0 25px;

will generate a down ward triangle:

 border-width: 25px 50px 25px 0;

will generate a left facing triangle:

Right triangle
 Right angled triangles look very good when
put in corner of an HTMl document.

 Th is time, we won’t call them top, right,
up or down triangles for the sake of clarity and
unambiguity.

 We will call them top-left , top-right,
bottom-right and bottom-left , depending upon
which direction their base and perpendicular are.
Also, watch closely two properties border-color and
border-width. I’ll show you two ways you can do
every right triangle.

case 1.a with 100px width

#protagonist{
 border-style: solid;
 border-color: transparent transparent
transparent Black;
 border-width: 0px 0px 100px 100px;
}

case 1.b with 50px width

#protagonist{
 border-style: solid;
 border-color: Black transparent transparent
Black;
 border-width: 50px;
}

output in both cases will be same, pixel by pixel:

 Don’t want to lie to you or something, these
right triangles are isosceles triangles too. :)

case 2.a top-right triangle

 border-color: transparent Black transparent
transparent;
 border-width: 0px 100px 100px 00px;

case 2.b

 border-color: Black Black transparent
transparent;
 border-width: 50px;

result is still identical:

case 3.a bottom-right triangle

 border-color: transparent Black transparent
transparent;
 border-width: 100px 100px 00px 00px;

case 2.b

 border-color: transparent Black Black
transparent;
 border-width: 50px;

result is as expected:

 You caught the drift , right! So, as an
exercise, try the remaining one.

Semi circle
 We have created circle using border radiuus,
quite similarly semi circle can be achieved. Of
course there are four semi circles top, right, bottom
and left .

 width: 0px;
 border-style: solid;
 border-color: Black Black transparent Black;
 border-width: 50px 50px 0 50px;
 border-radius: 50px 50px 0 0;

for right semi circle

 border-color: Black Black Black transparent;
 border-width: 50px 50px 50px 0;
 border-radius: 0 50px 50px 0;

for bottom semi circle
 border-color: transparent Black Black;
 border-width: 0 50px 50px 50px;
 border-radius: 0 0 50px 50px;

left semi circle:
 border-color: Black transparent Black Black;
 border-width: 50px 0 50px 50px;
 border-radius: 50px 0 0 50px;

 Th is all was predictable, but here’s the
shocker for left semi circle, take right semi circle’s
color and width and above left ’s radius:

 border-color: Black Black Black transparent;
 border-width: 50px 50px 50px 0;
 border-radius: 50px 0 0 50px;

same result:

Th ere are few more semi circles left , like top-left ,
top-right, bottom-right, bottom-left .

We can use transform CSS property, but let’s just
play with properties we know yet.

bottom-right semi circle

 border-color: transparent Black Black trans-
parent;
 border-radius: 00px 100px 100px 100px;

bottom-left semi circle

 border-color: transparent transparent Black
Black;
 border-radius: 100px 00px 100px 100px;

top-left semi circle

 width: 0px;
 border-style: solid;
 border-color: Black transparent transparent
Black;
 border-width: 100px;
 border-radius: 100px 100px 00px 100px;

top-right semi circle

 border-color: Black Black transparent trans-
parent;
 border-width: 100px;
 border-radius: 100px 100px 100px 00px;

U.F.O / cool Hat
 It reminds me of some Star Wars character
who used to wear black. I am sorry I don’t know
much about Star Wars or Star Trek for that
matter.
 We will fi rst deal with top-left , top-right,
bottom-right, and bottom-left ; later we will access
top, right, bottom and left ones.

top-left UFO or star wars hat.

 width: 0px;
 border-style: solid;
 border-color: Black transparent transparent
Black;
 border-width: 100px;
 border-radius: 100px 00px;

top-right U.F.O
 border-color: Black Black transparent
transparent;
 border-width: 100px;
 border-radius: 00px 100px ;

Other two are guessable. You must have found
pattern to it by now. So, let’s rotate the things a bit.

We can not create top, right, bottom or left UFO
this way, so what we will do is rotate them 45
degrees. top-left on 45 degree rotation will yield top
UFO. Rest is what you can play with.

 Let’s take top-left and create a top UFO

 border-color: Black transparent transparent
Black;
 border-width: 100px;
 border-radius: 100px 00px;
 -webkit-transform: rotate(45deg);
 margin: 0 35px;

margin is required because in simplest cases it will
go to left and get clipped.

Other are also possible. Play with 45 degrees of
increment in rotation.

Since we now know about rotate, let’s visit every
example we have created till now.

Rotate Examples
 Square is fi rst one. On rotating it becomes
diamond from playing cards, may be by a bit of
width/height manipulation.

Th is was our fi rst square:

 background-color: Black;
 height: 100px;
 width: 100px;

Let’s rotate it 45 degrees:

 -webkit-transform:rotate(45deg);

 Positive degrees of rotation in CSS are
clockwise, so if you look at the axis of the both
squares they will look like this:

Rotating rectangle is same thing, rotating circle is
pointless unless it was multicolored, rotating semi
circle is similar to rotating square, rotating triangles
is same old boring till now.

Hmm, seem like we have done everything we could
do with just one div.

Okay, so just read more theory and go home. Shall
we?

+Y | top | bottom

+X | left| right

+Y | top | bottom

+X | left| right

More Th eory
 How does border generates triangles?

 Let’s see a bordered div under microscope,
er... a coloroscope. Whatever.

 #protagonist{
 border: 50px solid;
 border-color: red green yellow blue;
 }

 Th is will generate something like this:

So, when you turn any border side color to
transparent, you miss that triangle. For example, to
make only the blue triangle, all I need to do is:

 border-color: transparent transparent
transparent blue;

and I would get something like below (assume
transparent is not quite transparent [:-)])

Cool, so now you can create triangles, but what
about right angled triangles, where did they come
from?

Th ere were two type of right angled triangles, one
is quite easy to fi gure out now, all you have to do is
make two border sides transparent. Let’s see:

 border-color: Blue Blue transparent
transparent;

will produce something like this:

Th e other way is quite the convoluted one. Let’s
bring up the wireframe.

So, now say I want right top right angle triangle, I
would require to isolate the white one in the image
next page.

For that, we need to understand what happens
when border width is omitted for a side?

 When we omit width for one side, we
completely remove that side border, thus

 border-width: 50px 0 50px 50px;

will become:

now, if I need only the red top right triangle, I need
to either remove bottom border too and make left
border transparent or make bottom and left border
transparent. Let’s do former.

 border-width: 50px 0 0 50px;
 border-color: red transparent;

Note that I have set top and bottom border red, but
since I have also made width of bottom border zero,
it won’t show.

Output of such would be:

Various shapes
 8 corners

 #protagonist{
 margin: 100px;
 height: 0px;
 width: 0px;
 border: 50px solid Black;
 }
 #protagonist::aft er{
 display: block;
 content: “”;
 height: 0;
 width: 0;
 border: 50px solid Black;
 -webkit-transform: rotate(45deg);
 position: relative;
 top: -50px;
 left : -50px;
 }

will generate image like this:

What we have done is that create a box using
#protagonist and then create another box rotated 45
deg CC using #protagonist::aft er.
 Th en using relative positioning overlapped
them.

 12 corners

 Important thing here is that I rotated ::aft er
and ::before psuedo boxes 30 and -30 degrees.

 It looks like this:

 #protagonist{
 margin: 100px;
 height: 0px;
 width: 0px;
 border: 50px solid Black;
 }

 #protagonist::aft er{
 display: block;
 content: “”;
 height: 0;
 width: 0;
 border: 50px solid Black;
 -webkit-transform: rotate(-30deg);
 position: relative;
 top: -150px;
 left : -50px;
 }

 #protagonist::before{
 display: block;
 content: “”;
 height: 0;
 width: 0;
 border: 50px solid Black;
 -webkit-transform: rotate(30deg);
 position: relative;
 top: -50px;
 left : -50px;
 }

 Sign of Addition

 #protagonist {
 margin: 10px 50px;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: black;
 border-width: 50px 10px;
 }

 #protagonist::aft er {
 display: block;
 content: “”;
 border-style: solid;
 border-color: black;
 border-width: 10px 50px;
 top: -10px;
 left : -50px;
 position: relative;
 }

Creating sign of subtraction is even more trivial.

 Sign of Multiplication

 #protagonist {
 margin: 10px 50px;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: black;
 border-width: 50px 10px;
 -webkit-transform: rotate(45deg);
}

 #protagonist::aft er {
 display: block;
 content: “”;
 border-style: solid;
 border-color: black;
 border-width: 10px 50px;
 top: -10px;
 left : -50px;
 position: relative;
 }

Creating sign of division is even more trivial.

 Sign of modulus or percentage

#protagonist {
 margin: 75px;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: black;
 border-width: 10px 100px;
 -webkit-transform: rotate(-45deg);
}

#protagonist::before {
 display: block;
 content: “”;
 border-style: solid;
 border-color: black;
 border-width: 20px;
 top: -75px;
 left : -25px;
 position: relative;
 -webkit-transform: rotate(-90deg);
 border-radius: 20px;
}

#protagonist::aft er {
 display: block;
 content: “”;
 border-style: solid;
 border-color: black;
 border-width: 20px;
 top: -10px;
 left : -25px;
 position: relative;
 -webkit-transform: rotate(-90deg);
 border-radius: 20px;
}

 Sign of less than

#protagonist{
 margin: 100px;
 height: 0px;
 width: 0px;
 border-width: 10px 100px;
 border-style: solid;
 -webkit-transform: rotate(-35deg);
}

#protagonist::aft er{
 display: block;
 content: “”;
 height: 0;
 width: 0;
 border-width: 10px 100px;
 border-style: solid;
 -webkit-transform: rotate(70deg);
 position: relative;
 top: 77px;
 left : -175px;
}

 <

 Sign of greater than

#protagonist{
 margin: 100px;
 height: 0px;
 width: 0px;
 border-width: 10px 100px;
 border-style: solid;
 -webkit-transform: rotate(35deg);
}

#protagonist::aft er{
 display: block;
 content: “”;
 height: 0;
 width: 0;
 border-width: 10px 100px;
 border-style: solid;
 -webkit-transform: rotate(-70deg);
 position: relative;
 top: 77px;
 left : -24px;
}

 >

 Sign of exclamation

#protagonist{
 margin: 100px;
 height: 0px;
 width: 0px;
 border-width: 100px 10px;
 border-style: solid;
}

#protagonist::aft er{
 display: block;
 content: “”;
 height: 0;
 width: 0;
 border-width: 10px;
 border-style: solid;
 position: relative;
 top: 110px;
 left : -10px;
}

It will create a rectangualar/square-ish exclamation
mark. Following is kind of medal-ish and sexy.

#protagonist {
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: black;
 border-width: 100px 60px;
 position: relative;
 left : 100px;
 border-radius: 0 0 10px 10px;
}

#protagonist::aft er {
 display: block;
 content: “”;
 border-style: solid;
 border-color: black;
 border-width: 40px 50px;
 top: 110px;
 left : -50px;
 position: relative;
 border-radius: 10px 10px 40px 40px;
}

 Sign of hash

#protagonist {
 margin: 100px;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: black;
 border-width: 100px 10px;
 -webkit-transform: skew(-10deg);
 box-shadow: 90px 0 0 0 black;
}

#protagonist::aft er {
 display: block;
 content: “”;
 border-style: solid;
 border-color: black;
 border-width: 10px 100px;
 top: -50px;
 left : -50px;
 position: relative;
 -webkit-transform: skew(-10deg);
 box-shadow: 10px 90px 0 0 black;
}

 #

 Quarter circle and pizza slice

#protagonist{
 border-style: solid;
 border-color: transparent transparent
transparent Black;
 border-width: 100px 00px 100px 100px;
 border-radius: 100px 00px 00px 100px;
}

 converting it into other circles is quite the
same drill we have seen with earlier examples. All
you have to do is shuffl e the values around.

 converting it into a pizza slice requires
increasing border width of the side bulging out. for
above example we need to change border width as
follows:

 border-width: 100px 00px 100px 170px;

you can make your slice as big as you want. For me
170 pixels looked nice enough.

Trapezoid
 Do you know that Americans call trapezoid:
A quadrilateral with two parallel sides where as
British call trapezoid: A quadrilateral with no
parallel sides.

 Anyway, remember that top isosceles
triangle a while ago, we are going to create trapezoid
using that same triangle.

Th is code creates upward triangle:

#protagonist{
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent transparent Black
transparent;
 border-width: 0px 25px 50px 25px;
}

And this creates an upward trapezoid:

#protagonist{
 height: 0px;
 width: 50px;
 border-style: solid;
 border-color: transparent transparent Black
transparent;
 border-width: 0px 25px 50px 25px;
}

It looks like this:

 Th is code creates a rightward triangle:

#protagonist{
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent transparent
transparent Black;
 border-width: 25px 0px 25px 50px;
}

to convert it into a trapezoid we need height:

#protagonist{
 height: 50px;
 width: 0px;
 border-style: solid;
 border-color: transparent transparent
transparent Black;
 border-width: 25px 0px 25px 50px;
}

Now, since this basic concept is clear, we can create
others easily.

Ring
 Creating ring is application of height and
width on a bordered circle. Also, the background
color has to be applied so that the border,
outer shell, and content region, cavity, can be
diff erentiated visually.

Alas, there are no top, right, bottom or left rings.
We have to deal with one. but don’t be sad, next up
we will be creating a diamond. Soon enough we will
have a diamond ring. :)

#protagonist{
 height: 50px;
 width: 50px;
 border: 5px solid Black;
 border-radius: 30px;
}

But isn’t a single ring boring? What about two of
them? (what’s emoticon for showing teeth and
growing horns?)

#protagonist{
 height: 50px;
 width: 50px;
 border: 5px solid Black;
 border-radius: 30px;
 position: relative;
 top: 30px;
 left : 30px;
}

#protagonist::aft er{
 display: block;
 content: ‘’;
 height: 70px;
 width: 70px;
 border: 5px solid Silver;
 border-radius: 40px;
 position: relative;
 top: -15px;
 left : -15px;
}

BELIEVE IT OR NOT, ADOBE INDESIGN CS 5.5
CAN NOT HANDLE RING IN RING AT ALL.

Can we create Olympics rings? Sadly No. Not that I
can think of right now. sigh!

But, we can create 3/5th of Olympic rings, let’s keep
southern continents out of this personal Olympics.

#protagonist is same, changes are in position of
::aft er and ::before got what was ::aft er’s in earlier
code.

#protagonist::aft er{
 display: block;
 content: “”;
 height: 50px;
 width: 50px;
 border: 5px solid Black;
 border-radius: 30px;
 position: relative;
 top: -65px;
 left : 76px;
}

#protagonist::before{
 display: block;
 content: “”;
 height: 50px;
 width: 50px;
 border: 5px solid Black;
 border-radius: 30px;
 position: relative;
 top: -5px;
 left : 36px;
}

 It creates three rings in one straight line, if
you wish you can play with ::before’s top value and
put them in zigzag fashion like:

BELIEVE IT OR NOT, ADOBE INDESIGN CS 5.5
CAN NOT HANDLE RING IN RING AT ALL.

actually, you will need to play with top and left of
both ::aft er and ::before.

Since we can maipulate width of the border and
dimensions of content region,why don’t we create
heavier rings or tyres. You can imaging them to be
rubber tyres.

Increase border width and compensate radius,
something like this will emerge.

Th ough if you go for wider ring, it will look like
a (I don’t know what it is called in English, but it
is used in plumbing and in some screw fastening
mechanisms) :)

A bit more and it will become a cd, increase size
and it will become old gramophone disk:

Some more things to try can be:

BELIEVE IT OR NOT, ADOBE INDESIGN CS 5.5
CAN NOT HANDLE RING IN RING AT ALL.

BELIEVE IT OR NOT, ADOBE INDESIGN CS 5.5
CAN NOT HANDLE RING IN RING AT ALL.

BELIEVE IT OR NOT, ADOBE INDESIGN CS 5.5
CAN NOT HANDLE RING IN RING AT ALL.

BELIEVE IT OR NOT, ADOBE INDESIGN CS 5.5
CAN NOT HANDLE RING IN RING AT ALL.

Parallelogram
 Remember something like a quadrilateral
whose opposite sides are both parallel and are equal
in length, such a beauty worldwide is known as a
parallelogram.
 Th ere are more than one way for creating a
parallelogram, let’s start from beginning.

 from square

draw a square and add this to CSS declarations:

 -webkit-transform: skew(30deg);

voila!

still code is here:

#protagonist{
 background-color: Black;
 height: 100px;
 width: 100px;
 -webkit-transform: skew(-30deg);
}

which generates a parallelogram like this:

of course, skew skews objects, negative angles are
CW and positive are CCW.

TIP:
You can also deploy rotate(angle) and
translate(length) along with skew(angle).

 from triangles

create a (say) upward triangle. Spawn a ::aft er
element, turn it into a downward triangle; and you
are done.

#protagonist{
 margin: 100px;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent transparent black
transparent;
 border-width: 0 25px 40px 25px;

}

#protagonist::aft er{
 display: block;
 content: “”;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: black transparent transparent
transparent;
 border-width: 40px 25px 0 25px;

}

TIP
Just an FYI, if you don’t spawn ::aft er, and in the
#protagonist code add -webkit-box-refl ect: below;
you will get a diamond.

Stars
 Remember triangles? same thing but now
we will create and use multiple triangles to create
various stars.

 pointy 6 star

#protagonist{
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent transparent Black
transparent;
 border-width: 0px 25px 50px 25px;
}

#protagonist::before{
 display: block;
 content: “”;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: Black transparent transparent
transparent;
 border-width: 50px 25px 0px 25px;
 position: relative;
 left : -25px;
 top: 15px;
}

Basically these are just two stars on top of each
other, one of them is upside down.

Creating pointy 5 star proved to be a mild
challenge. I wanted to use box refl ection. Talk
about overkill! But, just couldn’t get handle on the
approach angle. Ended up using same old triangles
in same old way.

Pointy 5 doesn’t look that cool, may be because all
the triangles are identical. In another attempt I will
use diff erent triangles, a recipe which I cooked a
while ago.

 pointy 5 star

#protagonist{
 margin: 100px;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: black transparent transparent
transparent;
 border-width: 50px 100px 0 100px;
}

#protagonist::before{
 display: block;
 content: “”;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent black transparent
transparent;
 border-width: 100px 50px 100px 0;
 -webkit-transform: rotate(-25deg);
 position: relative;
 left : 0px;
 top: -110px;
}

#protagonist::aft er{
 display: block;
 content: “”;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent transparent
transparent black;
 border-width: 100px 0 100px 50px;
 -webkit-transform: rotate(25deg);
 position: relative;
 left : -40px;
 top: -310px;
}

 5 pointy star is created using 3 identical
triangles, rotated and painstakingly positioned to
give illusion of a star.

Th ere is another way where we can use an upward
triangle and those UFOs, except now they will be a
bit distorted; er... actually a lot distorted. Also box-
refl ect property is used. It is one ugly looking star.

#protagonist{
 margin:199px;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent transparent Black
transparent;
 border-width: 0px 75px 50px 75px;
}

#protagonist::aft er{
 display: block;
 content: “”;
 width: 0px;
 border-style: solid;
 border-color: black black transparent
transparent;
 border-width: 100px 100px 0px 130px;
 position: relative;
 border-radius: 00px 84px;
 top: -50px;
 left : -150px;
 -webkit-box-refl ect: right -160px;
}

#protagonist::before{
 display: block;
 content: “”;
 width: 0px;
 border-style: solid;
 border-color: black black transparent
transparent;
 border-width: 100px 100px 0px 110px;
 position: relative;
 border-radius: 00px 84px;
 top: 85px;
 left : -140px;

 -webkit-transform: rotate(-90deg);
 -webkit-box-refl ect: above -170px;
}

t
What I have done really doesn’t make sense. So, I
will create pointy 5 star in a bit more clean way. Th is
is how it breaks down to:

 pointy 5 cleaner

 Star that you saw on the last page wasn’t a
star. A 5 point star looks like pretty much this:

Aft er many many hit and trials (3 to be exact) I
put together three triangles and created it. It’s not
exactly a star that I had in mind but yeah. Whatever.

#protagonist{
 margin: 100px;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent transparent black
transparent;
 border-width: 0 25px 40px 25px;

}

#protagonist::before{
 display: block;
 content: “”;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent black transparent
transparent;
 border-width: 94px 44px 50px 0;
 -webkit-transform: rotate(67deg);
 position: relative;
 left : -15px;
 top: -21px;
}

#protagonist::aft er{
 display: block;
 content: “”;
 height: 0px;
 width: 0px;
 border-style: solid;
 border-color: transparent black transparent
transparent;
 border-width: 50px 40px 94px 0;
 -webkit-transform: rotate(113deg);
 position: relative;
 left : -23px;
 top: -167px;
}

With that I refuse to further investigate stars. Let’s
learn how to draw English capital letters via CSS.

